服务中心

电磁干扰三大要素详细分析

标签:

  在电子产品中,电磁干扰莫过于是最可怕的危害之一,理论和实践的研究表明,不管复杂系统还是简单装置,任何一个电磁干扰的发生必须具备三个基本条件:首先应该具有骚扰源;其次有传播干扰能量的途径和通道;第三还必须有被干扰对象的响应。在电磁兼容性理论中把被干扰对象统称为敏感设备(或敏感器)。

\

  电磁骚扰(EMI)定义

  电磁骚扰由寄生的、无用的传导和/或辐射的电信号组成,可能造成系统或设备的性能发生不允许的降级。

  在时域内,电磁骚扰可以是瞬变的、脉冲的或稳态的。在频域内,电磁骚扰所包含的频率分量范围可从50Hz的低频直到微波波段;电磁骚扰信号可以是窄带或宽带的,相参或非相参的。

  电磁骚扰敏感设备

  一般将端口分为以下5类:

  ①外壳端口;②交流电源端口;③直流电源端口;④控制线/信号线端口;⑤接地端口,即系统和地或参考地之间的连接。

  根据形成电磁干扰三要素可知,要实现产品的电磁兼容,须从三个方面着手:抑制电磁骚扰源;切断电磁骚扰耦合途径;提高电磁敏感设备的抗干扰能力。

  电磁骚扰的传播途径

  电磁骚扰的传播途径包括传导耦合和辐射耦合。

  传导耦合必须在骚扰源和敏感设之间有完整的电路连接。这个传输电路可包括导线、设备的导电部件、供电电源、公共阻抗、接地平面、电阻、电感、电容、和互感元件等。

  辐射耦合是通过介质以辐射电磁波形式传播,骚扰能量按电磁波的规律向周围空间发射,常见的辐射耦合有三种:①骚扰源天线发射的电磁波被敏感设备天线意外接收,称为天线对天线耦合;②空间电磁场经导线感应而耦合,称为场对线的耦合;③两根平行导线之间的高频信号感应,称为线对线感应耦合。

  传导耦合包括互传导耦合和导线间的感性与容性耦合。辐射耦合包括近场耦合和远场耦合。

  电磁骚扰源分类

  一般说来电磁干扰源可分为两大类:分别是自然干扰源和人为干扰源。自然干扰源主要是来源于大气层的天电噪声、地球外层空间的宇宙噪声,这些即是地球电磁环境的基本要素组成部分,同时又是对无线电通讯和空间技术造成干扰的干扰源。人为干扰源是由机电或其他人工装置产生电磁能量干扰,其中一部分是专门用来发射电磁能量的装置,如广播、电视、通信、雷达和导航等无线电设备,称为有意发射干扰源。另一部分是在完成自身功能的同时附带产生电磁能量的发射,如交通车辆、架空输电线、照明器具、电动机械、家用电器以及工业、医用射频设备等等。因此这部分又成为无意发射干扰源。

\

  电磁噪声的频谱

  电磁噪声的频谱非常宽。

  我们不必要去研究每一条谱线及其相位,甚至对其变化细节也不必过分地关心。一般只需注意包络顶端连线的变化规律,就能对不同时域波形相应的频域特性有个大体的了解。这种了解对于理解电磁噪声的传播以及电磁兼容测量已是够了。

  电磁骚扰的幅度(电平)

  骚扰幅度可表现为多种形式,除了用不同型号的幅度分布(即概率,它是确定的幅度值出现次数的百分率)表示外,还可用正弦的(具有确定的幅度分布)或“随机的”概念来说明骚扰性质。

  电磁骚扰的波形

  电气骚扰有各种不同的波形,如矩形波、三角波、余弦形波、高斯形波等等。由于波形是决定带宽的重要因素,设计人员应很好地控制波形。为了保持定时准确度或保证某种形式的准确动作,有时需要上升很陡的波形。然而,上升斜率越陡,所占的带宽就越宽。

  各种波形占用带宽由宽到窄的排列为:

  矩形波-锯齿波-梯形波-三角波-余弦形波-高斯形波。

  由此可见,使干扰减小到最小的方法之一,是在可靠工作的情况下使设计的脉冲波形,具有尽可能慢的上升时间。通常脉冲下的面积决定了频谱中的低频含量,而其高频成份与脉冲沿的陡度有关。在所有脉冲中,高斯脉冲占有频谱最窄。

\

  电磁骚扰的出现率

  骚扰信号在时间轴上出现的规律称为出现率。按出现率把电函数分为周期性、非周期和随机的三种类型来考虑。周期性函数是指在确定的时间间隔(称之为周期)内能重复出现;非周期性函数则是不重复的,即是没有周期,但出现是确定的,而且是可以预测的。随机函数则是以不能预测的方式变化的电函数,它的表现特性是没有规律的。随机函数的定义允许限定其幅度或频率成份,但要防止用时间函数来分析、描述它。

  通常,干扰问题中遇到的周期电压和电流是功能性的,它们的产生是为了特定的目的,如50Hz电源及其谐波或遥测信号。许多非周期性电压和电流也是用于特定目的,如指令脉冲。然而随机电压电流则是无用副产品,或是自然产生的,如热噪声。

  计讯工业路由器、工业网关、DTU等一系列物联网设备均采用工业级金属外壳设计、高EMC电磁兼容、耐高低温(-35℃至75℃),宽压(5V-35V);超强的防潮、防雷、防电磁干扰能力,保障设备在恶劣环境下稳定运行。

工业网关